
1001 bugs – or: the golden
rules of bad programming

Christian Boltz
openSUSE beta tester, PostfixAdmin developer,
battle-hardened AppArmorer, …
and: BBfH

© September 27, 2011 Christian Boltz
2

Never use any libraries or existing
functions
Re-inventing the wheel is fun!

function myprint ($text) {
$handle = fopen(“/dev/stdout”);
fput($handle, $text);

}

Photo: http://www.flickr.com/photos/vrogy/514733529/

© September 27, 2011 Christian Boltz
3

Handle special values in a special way

looks like you have some special code in yast for
password "x", maybe I should use the even more
secure new password "y" in the future ?! ;-)
[Harald Koenig, bnc#148464]

© September 27, 2011 Christian Boltz
4

Invent new ways to make your program
slow
while ($current < $list['alias_count']) {

 $query = "SELECT $table_alias.address FROM $table_alias

 [...] LIMIT $current, 1";

 $result = db_query ("$query");

 $row = db_array ($result['result']);

 $tmpstr = $row['address'];

 $idxlabel = $tmpstr[0] . $tmpstr[1]; // first two chars

 $current = $current + $page_size;

 $pagebrowser[]=$idxlabel;

}

© September 27, 2011 Christian Boltz
5

Invent new ways to make your program
slow
$initcount = "SET @row=-1";
$result = db_query($initcount);

get labels for relevant rows (first and last of each page)
$page_size_zerobase = $page_size - 1;

$query = "
 SELECT * FROM (
 SELECT $idxfield AS label,
 @row := @row + 1 AS row $querypart
) idx WHERE MOD(idx.row, $page_size)
 IN (0,$page_size_zerobase) OR idx.row = $count_results

";

$result = db_query ($query);

if ($result['rows'] > 0) {
 while ($row = db_array ($result['result'])) {
 # store all labels in an array
 }
}

© September 27, 2011 Christian Boltz
6

Users hate error messages

Conclusion: never print an error message.
Fail silently instead.

openSUSE developers seem to love this rule:
• no error message when RPM database is missing
 (bnc#148105)
• rcxdm doesn't start X in failsafe
 mode if xorg.conf.install was
 deleted (bnc#394316)

© September 27, 2011 Christian Boltz
7

kweather not installed – and now?

> Hmm, what about looking out of the window?
Outside of the window is another window, the
desktop background or the border of the monitor.
How exactly would that help?

[full story: bnc#141107]

© September 27, 2011 Christian Boltz
8

Never drop any privileges

… you might need them later again

• aa-notify broken on 11.4 because of missing
 permissions
• might apply to real world also

© September 27, 2011 Christian Boltz
9

Make the UI easy to understand

[bnc#21867]

© September 27, 2011 Christian Boltz
10

Make the UI easy to understand

vi commands are quite easy to remember.
Once you know what dw db de d) d(d} d{ dd
d^ d$ d0 dG as well as cw and yw do, you'll also
know what cb ce c) c(c} c{ cc c^ c$ c0 cG
and yb ye y) y(y} y{ yy y^ y$ y0 yG do.

[Bernd Bordesser in
suse-linux, translated]

© September 27, 2011 Christian Boltz
11

Take great care in setting bad defaults

zypper ar obs://home:cboltz home:cboltz
always adds the Factory repo instead of the repo for
the installed version.

But there is a config option to hardcode the
distribution in zypper.conf (and to have fun after
upgrading the distribution)

(/etc/SuSE-release anyone?)

[bnc#648892]
[wontfix, ENOTIME]

© September 27, 2011 Christian Boltz
12

It's enough to expect the usual data

(cron.daily doesn't run because the system is on
battery)

Yes Karl, your machine has a battery! But no ac
adapter :-)
Unfortunately it is the battery in the BT Mouse and it
won't be able to power your system for very long :-)

[Stefan Seyfried, bnc#221999]

© September 27, 2011 Christian Boltz
13

It's enough to expect the usual data

#define IM_TEXT_LEN 32
char numstr[20];
char str[IM_TEXT_LEN];
sprintf(numstr, "%%2d%%%% %%.%ds",
 IM_TEXT_LEN-6);

sprintf(str, numstr,
 (int)(percent * 100),
 graph->pairs[i]->name);

[modlogan, bnc#517602]

© September 27, 2011 Christian Boltz
14

It's enough to expect the usual data

#define IM_TEXT_LEN 32
char numstr[20];
char str[IM_TEXT_LEN];
sprintf(numstr, "%%2d%%%% %%.%ds",
 IM_TEXT_LEN-6);
numstr = "%2d%% %.27s"
sprintf(str, numstr,
 (int)(percent * 100),
 graph->pairs[i]->name);

[modlogan, bnc#517602]

© September 27, 2011 Christian Boltz
15

Never make your code reusable

… especially if it has more than 1000 lines

Reusing pieces of code is like picking off sentences
from other people's stories and trying to make a
magazine article. [Bob Frankston]

Besides that:
Nobody needs that much
code a second time ;-)

© September 27, 2011 Christian Boltz
16

Make ALL your code reuseable

(including each and every little script you write)

bad:
 echo "Hello World!";

© September 27, 2011 Christian Boltz
17

Make ALL your code reuseable

good:
 Class HelloWorld {

 my $greeting = "Hello World!";

 function setGreet($newGreeting) {
 $greeting = $newGreeting;
 }

 function greet() {
 echo $greeting;
 }
 }

 $greeter = new HelloWorld;

 # default text is fine
 $greeter->greet;

© September 27, 2011 Christian Boltz
18

Make ALL your code reuseable

This will save you lots of work in the future.
You can then just do:

 $greeter = new HelloWorld;
 $greeter->setGreet("Hello openSUSE!");
 $greeter->greet;

© September 27, 2011 Christian Boltz
19

Make ALL your code reuseable

This will save you lots of work in the future.
You can then just do:

 $greeter = new HelloWorld;
 $greeter->setGreet("Hello openSUSE!");
 $greeter->greet;

That's easier than
 echo "Hello openSUSE!";

© September 27, 2011 Christian Boltz
20

Don't use small if blocks. Use cp instead.

cp edit-mailbox.php admin/edit-mailbox.php
vi admin/edit-mailbox.php # remove permission checks
diff edit-mailbox.php admin/edit-mailbox.php | wc -l
 15
… 5 years later …
diff edit-mailbox.php admin/edit-mailbox.php | wc -l
 250

© September 27, 2011 Christian Boltz
21

Don't use small if blocks. Use cp instead.

Boring:

[Unit]
Description=Daemon to detect crashing apps
After=syslog.target

[Service]
ExecStart=/usr/sbin/abrtd
Type=forking

[Install]
WantedBy=multi-user.target

© September 27, 2011 Christian Boltz
22

Don't use small if blocks. Use cp instead.

Also boring:
CPAN_service in the buildservice

That would make it too obvious that you are a
lazybone as packager and just use a template-
based specfile.
It's much more maintenance
fun to checkin the cpanspec-
generated specfiles.

© September 27, 2011 Christian Boltz
23

Always trust your users
or: never check user input
Even AppArmor followed this rule, so it can't be too
wrong ;-)

echo 'AAA AAA' > /proc/$$/attr/current
Segmentation fault

[107353.169142] kernel BUG at kernel BUG at
/usr/src/packages/BUILD/kernel-desktop-
2.6.37.6/linux-2.6.37/security/apparmor/audit.c:183!
[107353.169159] invalid opcode: 0000 [#7] SMP
[…]
[https://bugs.launchpad.net/bugs/789409]

© September 27, 2011 Christian Boltz
24

Always trust your users
or: never check user input

http://server/wbb/images/avatars/myphoto.php
will give the admin some fun...

[Woltlab burning board 1.0.2]

© September 27, 2011 Christian Boltz
25

Always trust your users
or: never check user input
The input you may expect will be completely
unrelated to the input given by a disgruntled
employee, a cracker with months of time on their
hands, or a housecat walking across the keyboard.

[http://www.php.net/manual/
en/security.general.php]

© September 27, 2011 Christian Boltz
26

Always trust your users
or: never check user input

[http://xkcd.com/327/]

© September 27, 2011 Christian Boltz
27

Always check for errors

Especially if you write a library.

It isn't trivial to write correct code:
 exit(-1);
 syslog(LOG_ERROR, “Can't exit.\n”);

[Lutz Donnerhacke in dclp,
translated]

© September 27, 2011 Christian Boltz
28

Never think about error handling

Just expect your code to work.

• error handling is only boring programming work,
 it's much more exciting to fix bugs after deploying
 the software on production-critical systems
• better invest your time in developing new features
• thinking about errors is the job of
 bugreporters anyway

© September 27, 2011 Christian Boltz
29

Bugzilla speed with Coolo

> Status?
NEW
[Ihno Krumreich and Stephan Kulow, bnc#159223]

> which camera is this?
Marcus, this is my bug :)
[Marcus Meissner and Stephan Kulow, bnc#217731]

© September 27, 2011 Christian Boltz
30

Never expect someone will use your
software
Hardcoding your username is fine.

> mkdir: Can't create directory »»/home/ratti««
> Looks like you should use ~ instead of
> /home/ratti ;-)
Wait and see – 0.0.3 will even work if your name is
not “ratti” ;-)

[Fontlinge development fun
with Ratti, translated]

© September 27, 2011 Christian Boltz
31

Never expect someone will use your
software
Never remove any debugging code
(at least until someone forces you to do it)

mcelog should NOT email trenn@suse.de by default

[bnc#713562]

© September 27, 2011 Christian Boltz
32

Never expect someone will use your
software
Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby,
won't be big and professional like gnu) for 386(486)
AT clones. This has been brewing since april, and is
starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS
resembles it somewhat (same
physical layout of the file-
system (due to practical
reasons) among other things).

[Linus Torwalds, August 1991]

© September 27, 2011 Christian Boltz
33

Nest your code as deep as possible

if ($name == “foo”) {

 if ($value == “bar”) {

 if ($number > 0) {

 if ($flags == "baz") {

 # 1000 lines of code

 } else {

 die ("invalid flag");

 }

 } else {

 die ("invalid number");

 }

 } else {

 die ("invalid value");

 }

} else {

 die ("invalid name");

}

 Never do something like this:

 if ($name != “foo”) {

 die("invalid name");

 }

 if ($value != "bar") {

 die ("invalid value");

 }

 if ($number <= 0) {

 die("invalid number");

 }

 if ($flags != "baz") {

 die ("invalid flag");

 }

 # 1000

 # lines

 # of

 # code

© September 27, 2011 Christian Boltz
34

Offer some brain training for your users

zypper ar --help |grep refresh
-f, --refresh Enable autorefresh of the repository.
zypper mr --help |grep refresh
-r, --refresh Enable auto-refresh of the repository.

[bnc#661410]

© September 27, 2011 Christian Boltz
35

Ignore compiler and rpmlint warnings

• real problems cause errors, not warnings
• conclusion: warnings are not a problem

© September 27, 2011 Christian Boltz
36

Never submit your patches upstream

Keeping the patches in your package is fun:
• you look like a professional if you can handle
 50 patches in a package
• you save upstream some work on reviewing and
 integrating the patches
• you always have some fun when updating the
 package and your patches to the next
 version

© September 27, 2011 Christian Boltz
37

Never write any documentation

• if some old documentation exists, never update it
• nobody reads documentation anyways
• comments in the code also count as
 documentation – avoid adding them whenever
 possible

© September 27, 2011 Christian Boltz
38

Never write any documentation

• nobody reads documentation anyways

 Really?

I've been doing this 10.1 test work just
like a real user: In other words I never
read any release notes or documenta-
tion :-)
[tomhorsley(at)adelphia.net
in opensuse-factory]

© September 27, 2011 Christian Boltz
39

Never write any documentation

• nobody reads documentation anyways

 Really?
 Beware of the paperclips!

•

•

•

•

•
 [bnc#65000]

© September 27, 2011 Christian Boltz
40

> > RESOLVED INVALID
> Henne, did you actually test this before closing
> the bug as invalid?
of course i did not test it. do you think i'm bored?

[bnc#420972]

Never trust a bugreporter

© September 27, 2011 Christian Boltz
41

general rule: if Olaf reports a bug, it is a valid bug.
(Olaf Hering while reopening bnc#168595)

Never trust a bugreporter

© September 27, 2011 Christian Boltz
42

NEEDINFO fun

I am supposed to be the info provider,
so here is my answer:
42
By the way:
What is the question?

[Johannes Meixner, bnc#190173]

© September 27, 2011 Christian Boltz
43

Never test small changes

switch2nvidia:
 * fixed disabling Composite extension;
 script replaced "Option" with "Optioff" :-(
[commit message by Stefan Dirsch]

KMS_IN_INITRD="noyes"
[sed result, bnc#619218]

-ao=pulse,alsa
+,alsa
[setup-pulseaudio fun, bnc#681113]

© September 27, 2011 Christian Boltz
44

Quoting in shell scripts is overestimated

@@ -352,1 +352,1 @@
- rm -rf /usr /lib/nvidia-current/xorg/xorg
+ rm -rf /usr/lib/nvidia-current/xorg/xorg

Probably the most-commented commit on github.
https://github.com/MrMEEE/bumblebee/commit/a047be

Hey, this makes you famous! ;-)

and the winner is...

© September 27, 2011 Christian Boltz
47

Make your code easy to understand

 #!/usr/bin/perl
 eval eval '"'.

 '#'.'!'.'/'.('['^'.') .+(
 '['^'(').('['^')').'/'.('`'|'"').('`'|')')
 .('`'|'.').'/'.('['^'+').('`'|'%').('['^')').
 ('`'|',').('!'^'+').('!'^'+').('['^'+').('[' ^+ (((
 ')')))).('`'|')').('`'|'.').('['^'/').('{'^'[') .''. ((
 '\\')).'"'.('`'^')')."'".('`'|'-').('{'^'['). ((((('`'
))))|'!').('{'^'[').('`'|"'").('`'|'%').(('`')| "\%").(
 '`'|'+') .('`'|'/').'!'.('{'^'[').':'.'-'.')'.'\\'. (((
 '\\'))).('`'|'.').'\\'.'"'.';'.('!'^'+').("\!"^
 '+'). "\"";$:= '.'^'~';$~='@'|('(');$^=
 ')'^ '[' ;($/) ="\`"| '.';$,=
 '('^ '}' ;$\= "\`"| "\!";
 ($:) ="\)"^ '}' ;$~= '*'|
 '`'; ($^) =(
 '+')^'_' ;($/)=
 '&'|'@';#;#

special rule for openSUSE:

special rule for openSUSE:

Always code as if the guy who
ends up maintaining your code

will be a violent psychopath
who knows where you live.

[John F. Woods]

© September 27, 2011 Christian Boltz
50

• everybody who accidently ;-) contributed to
 my talk
• for the inspiration by
 http://www.karzauninkat.com/Goldhtml/

 “golden rules of bad HTML” (german)
 http://www.sapdesignguild.org/community/design/golden_rules.asp
 “golden rules for bad user interfaces”
 http://blog.koehntopp.de/archives/2127-The-Importance-Of-FAIL.html
 http://blog.koehntopp.de/archives/2611-Was-bedeutet-eigentlich-

 Never-check-for-an-error-condition-you-dont-know-how-to-handle.html
 two great articles about FAIL by Kris Köhntopp
• perl Acme::EyeDrops for rendering rule #1
• for listening

Thanks!

Questions?
Opinions?

Flames?

1001 bugs – or: the golden
rules of bad programming

Christian Boltz
openSUSE beta tester, PostfixAdmin developer,
battle-hardened AppArmorer, …
and: BBfH

Battle-hardened AppArmorer:by Sascha Peilicke

BBfH: Bastard Bugreporter from Hell

You'll find lots of books telling you how to write good code. That's nice and maybe
even useful, but boring ;-)

My talk will give you something more inspiring: the golden rules of bad
programming.

BTW: I have no idea why rules have to be golden, but I won't break this tradition.

© September 27, 2011 Christian Boltz
2

Never use any libraries or existing
functions
Re-inventing the wheel is fun!

function myprint ($text) {
$handle = fopen(“/dev/stdout”);
fput($handle, $text);

}

Photo: http://www.flickr.com/photos/vrogy/514733529/

Using existent libraries is evil. Think of dependencies and bigger installed size if
you use lots of libraries – do you really want that?

I have to admit that the example is very extreme, but I also have an example from
practise – parsing commandline options.

You might think “hey, I only need to handle two options” - no need for a library.
That's also what happened in one of this year's GSoC projects. Sooner or later, you
add more commandline switches, some of them accept options and so on.

Sooner or later you have to switch to getopts that already provides all the details
you need.

© September 27, 2011 Christian Boltz
3

Handle special values in a special way

looks like you have some special code in yast for
password "x", maybe I should use the even more
secure new password "y" in the future ?! ;-)
[Harald Koenig, bnc#148464]

YaST had some special code that locked a newly created user if you give him
password 'x'.

There are more examples where special values were handled in a special way.

Think of all the y2k bugs where the year zero was handled in a funny way.

And Linux will get a similar problem in 2038 when the unix time (seconds since
1970) doesn't fit in a 32bit variable anymore. I doubt someone will still use 32bit
systems by then, but nevertheless the problem might be embedded in data
structures, file formats and in embedded devices like machine control units.

© September 27, 2011 Christian Boltz
4

Invent new ways to make your program
slow
while ($current < $list['alias_count']) {

 $query = "SELECT $table_alias.address FROM $table_alias

 [...] LIMIT $current, 1";

 $result = db_query ("$query");

 $row = db_array ($result['result']);

 $tmpstr = $row['address'];

 $idxlabel = $tmpstr[0] . $tmpstr[1]; // first two chars

 $current = $current + $page_size;

 $pagebrowser[]=$idxlabel;

}

A very good way to make a program slow is to do SQL queries in a loop.

The above code is a shortened sniplet from PostfixAdmin 2.3 to generate the
pagebrowser (you know – the “a-c, d-f, g-k” links) in the listing of mail addresses.
The code on the slide only fetches the starting point of each page, the original code
fetches start and end point, which doubles the number of queries.

Following this rule worked quite well – with 1000 pages of mail addresses, it took
10 minutes until the pagebrowser was generated. And, very strange, there were
even some users that complained about the loading time of that page...

© September 27, 2011 Christian Boltz
5

Invent new ways to make your program
slow
$initcount = "SET @row=-1";
$result = db_query($initcount);

get labels for relevant rows (first and last of each page)
$page_size_zerobase = $page_size - 1;

$query = "
 SELECT * FROM (
 SELECT $idxfield AS label,
 @row := @row + 1 AS row $querypart
) idx WHERE MOD(idx.row, $page_size)
 IN (0,$page_size_zerobase) OR idx.row = $count_results

";

$result = db_query ($query);

if ($result['rows'] > 0) {
 while ($row = db_array ($result['result'])) {
 # store all labels in an array
 }
}

Now here's what you should never do if you want to see your CPU busy: Let
MySQL count over the rows and just get the relevant lines with one big query.

The downside is that this doesn't work with postgresql – if someone knows a
similar working solution for postgresql, please tell me after the talk.

Oh, and while we are talking about databases: There's also the good old and simple
way to make your program slow – don't add an index to your tables. This small
detail can already make your queries 100 times slower.

© September 27, 2011 Christian Boltz
6

Users hate error messages

Conclusion: never print an error message.
Fail silently instead.

openSUSE developers seem to love this rule:
• no error message when RPM database is missing
 (bnc#148105)
• rcxdm doesn't start X in failsafe
 mode if xorg.conf.install was
 deleted (bnc#394316)

That's the hardest type of bugreports – trying to explain a developer that you want
to see an error message added. Usually they'll explain you why the thing you are
doing can't work and that it's impossible to add working code for that case, which is
usually a corner case.

About 5 reopens later, they finally understand that all you want is an additional
error message, which is what was already stated in the initial bugreport.

© September 27, 2011 Christian Boltz
7

kweather not installed – and now?

> Hmm, what about looking out of the window?
Outside of the window is another window, the
desktop background or the border of the monitor.
How exactly would that help?

[full story: bnc#141107]

Sometimes the developers in the SUSE office have really difficult problems to
solve.

One day Marcus noticed that kweather was not installed by default, and I proposed
to look out of the window.

Rasmus Plewe tried this, but not too successful.

© September 27, 2011 Christian Boltz
8

Never drop any privileges

… you might need them later again

• aa-notify broken on 11.4 because of missing
 permissions
• might apply to real world also

aa-notify is part of AppArmor and can be used to display desktop notifications
when a program violates the AppArmor policy.

By dropping permissions, it lost the ability to read /var/log/audit/

Funnily, it somehow followed the “never drop any privileges” rule and didn't drop
the group permissions. This means it was able to access the /var/log/audit/ directory
with its group permissions on Ubuntu, but not on openSUSE because of stricter
permissions.

That's the funny thing – sometimes two bugs neutralize each other. At least until
someone like me comes and has a too strict permission set to make the group
permission bug working.

© September 27, 2011 Christian Boltz
9

Make the UI easy to understand

[bnc#21867]

Now guess what happens if you click continue.

The answer is: YaST continues to cancel the installation – or, translated for the
confused listeners: continue cancels the installation.

If you click cancel, the installation will continue.

Buttons named “yes” and “no” might be a better idea in such cases.

© September 27, 2011 Christian Boltz
10

Make the UI easy to understand

vi commands are quite easy to remember.
Once you know what dw db de d) d(d} d{ dd
d^ d$ d0 dG as well as cw and yw do, you'll also
know what cb ce c) c(c} c{ cc c^ c$ c0 cG
and yb ye y) y(y} y{ yy y^ y$ y0 yG do.

[Bernd Bordesser in
suse-linux, translated]

This example speaks for itsself – vim is really easy to use

© September 27, 2011 Christian Boltz
11

Take great care in setting bad defaults

zypper ar obs://home:cboltz home:cboltz
always adds the Factory repo instead of the repo for
the installed version.

But there is a config option to hardcode the
distribution in zypper.conf (and to have fun after
upgrading the distribution)

(/etc/SuSE-release anyone?)

[bnc#648892]
[wontfix, ENOTIME]

© September 27, 2011 Christian Boltz
12

It's enough to expect the usual data

(cron.daily doesn't run because the system is on
battery)

Yes Karl, your machine has a battery! But no ac
adapter :-)
Unfortunately it is the battery in the BT Mouse and it
won't be able to power your system for very long :-)

[Stefan Seyfried, bnc#221999]

© September 27, 2011 Christian Boltz
13

It's enough to expect the usual data

#define IM_TEXT_LEN 32
char numstr[20];
char str[IM_TEXT_LEN];
sprintf(numstr, "%%2d%%%% %%.%ds",
 IM_TEXT_LEN-6);

sprintf(str, numstr,
 (int)(percent * 100),
 graph->pairs[i]->name);

[modlogan, bnc#517602]

Here's a nice format string example from modlogan – who can tell me what it does?

First it generates the formatstring numstr:

numstr: %2d → 2 digits from (int)(percent*100)

“%% “ → “%“ + space (2 byte)

%.27s → 27 chars string with dots as fillers

total: 31 bytes

And the even more interesting question: Why/how can it cause a buffer overflow?

Answer: with only one line in the log (in other words: only one client, only one
browser type), you'll get 100%. That's 3 digits and makes the string one byte longer
– 32 byte total, no space left for the null byte at the end

© September 27, 2011 Christian Boltz
14

It's enough to expect the usual data

#define IM_TEXT_LEN 32
char numstr[20];
char str[IM_TEXT_LEN];
sprintf(numstr, "%%2d%%%% %%.%ds",
 IM_TEXT_LEN-6);
numstr = "%2d%% %.27s"
sprintf(str, numstr,
 (int)(percent * 100),
 graph->pairs[i]->name);

[modlogan, bnc#517602]

Here's a nice format string example from modlogan – who can tell me what it does?

First it generates the formatstring numstr:

numstr: %2d → 2 digits from (int)(percent*100)

“%% “ → “%“ + space (2 byte)

%.27s → 27 chars string with dots as fillers

total: 31 bytes

And the even more interesting question: Why/how can it cause a buffer overflow?

Answer: with only one line in the log (in other words: only one client, only one
browser type), you'll get 100%. That's 3 digits and makes the string one byte longer
– 32 byte total, no space left for the null byte at the end

© September 27, 2011 Christian Boltz
15

Never make your code reusable

… especially if it has more than 1000 lines

Reusing pieces of code is like picking off sentences
from other people's stories and trying to make a
magazine article. [Bob Frankston]

Besides that:
Nobody needs that much
code a second time ;-)

© September 27, 2011 Christian Boltz
16

Make ALL your code reuseable

(including each and every little script you write)

bad:
 echo "Hello World!";

That's bad code because it is not reuseable

Let's make it better...

© September 27, 2011 Christian Boltz
17

Make ALL your code reuseable

good:
 Class HelloWorld {

 my $greeting = "Hello World!";

 function setGreet($newGreeting) {
 $greeting = $newGreeting;
 }

 function greet() {
 echo $greeting;
 }
 }

 $greeter = new HelloWorld;

 # default text is fine
 $greeter->greet;

Here's the good code:

- the greeting text is in a variable – the code is flexible enough to work with
different texts

- everything is encapsulated in a class – no internals are visible to the outside

- and, most important: it's reuseable

© September 27, 2011 Christian Boltz
18

Make ALL your code reuseable

This will save you lots of work in the future.
You can then just do:

 $greeter = new HelloWorld;
 $greeter->setGreet("Hello openSUSE!");
 $greeter->greet;

See how much work reuseable code can save you in the future. Just create an
instance of the class, set the text you want and let it print its greeting.

And, most important...

© September 27, 2011 Christian Boltz
19

Make ALL your code reuseable

This will save you lots of work in the future.
You can then just do:

 $greeter = new HelloWorld;
 $greeter->setGreet("Hello openSUSE!");
 $greeter->greet;

That's easier than
 echo "Hello openSUSE!";

… that's much easier than using code you can't re-use ;-)

In practise, the way to go is somewhere between this and the previous rule – big
programs should have units of reuseable code whereever it makes sence. OTOH, it
doesn't make sense to make everything reuseable, as the “hello world” example
showed.

Usually a pragmatic approach is the best choise – do what you think is the best

© September 27, 2011 Christian Boltz
20

Don't use small if blocks. Use cp instead.

cp edit-mailbox.php admin/edit-mailbox.php
vi admin/edit-mailbox.php # remove permission checks
diff edit-mailbox.php admin/edit-mailbox.php | wc -l
 15
… 5 years later …
diff edit-mailbox.php admin/edit-mailbox.php | wc -l
 250

This is a real-world example from PostfixAdmin, however the numbers are just a
not-so-wild guess.

Several years ago, edit-mailbox (for admins that have permissions only for some
domains) and admin/edit-mailbox (for superadmins, think “root”) had the same
code, with the only exception that the superadmin code did not check for domain
permissions.

Over the years, several changes and bugfixes were done – but only in one copy of
the code.

The result was that several copies of nearly the same code existed, but each copy
came with a different set of bugs.

That's what I found when I started working on PostfixAdmin in 2007. Since then
I'm more or less doing code cleanup and remove duplicated code. But yes, we also
introduced some new cool features.

© September 27, 2011 Christian Boltz
21

Don't use small if blocks. Use cp instead.

Boring:

[Unit]
Description=Daemon to detect crashing apps
After=syslog.target

[Service]
ExecStart=/usr/sbin/abrtd
Type=forking

[Install]
WantedBy=multi-user.target

A more openSUSE-related example are initscripts.

You all know how long the old-style initscripts are, and if you compare them, you'll
find out that 80 or 90% of the code is the same in all initscripts.

Now compare that to the systemd unit files. In short: the systemd unit files are ways
too short, boring and too easy to maintain.

© September 27, 2011 Christian Boltz
22

Don't use small if blocks. Use cp instead.

Also boring:
CPAN_service in the buildservice

That would make it too obvious that you are a
lazybone as packager and just use a template-
based specfile.
It's much more maintenance
fun to checkin the cpanspec-
generated specfiles.

Even more openSUSE-related: Source services in the buildservice.

In general they are a good idea (or at least would be if they work)

For example the cpanspec service would make it much easier to package 90% of
the perl packages.

However, that would make it too obvious that you are a lazybone as packager and
just use template-based specfiles.

Checking in the cpanspec-generated specfile will give you much more maintenance
fun. When you update the package, you have the choice of

a) edit the version number in the specfile and hope that everything else continues to
work

b) run cpanspec to recreate the specfile and hope that it didn't have to use an
additional parameter to cpanspec that you don't remember

My personal solution is to checkin a “run-cpanspec.sh” script in my packages.

And it's even funnier to discuss this with yaloki and darix who both hate source
services ;-)

© September 27, 2011 Christian Boltz
23

Always trust your users
or: never check user input
Even AppArmor followed this rule, so it can't be too
wrong ;-)

echo 'AAA AAA' > /proc/$$/attr/current
Segmentation fault

[107353.169142] kernel BUG at kernel BUG at
/usr/src/packages/BUILD/kernel-desktop-
2.6.37.6/linux-2.6.37/security/apparmor/audit.c:183!
[107353.169159] invalid opcode: 0000 [#7] SMP
[…]
[https://bugs.launchpad.net/bugs/789409]

© September 27, 2011 Christian Boltz
24

Always trust your users
or: never check user input

http://server/wbb/images/avatars/myphoto.php
will give the admin some fun...

[Woltlab burning board 1.0.2]

Real-world case: a customer's forum software allowed to upload any file as avatar.
Including PHP scripts...

BTW: The next version fixed the upload vulnerability, but allowed to download
any file the webserver could read – including PHP files with database passwords
and /etc/passwd

I'd say the PHP security team isn't too wrong. They say...

© September 27, 2011 Christian Boltz
25

Always trust your users
or: never check user input
The input you may expect will be completely
unrelated to the input given by a disgruntled
employee, a cracker with months of time on their
hands, or a housecat walking across the keyboard.

[http://www.php.net/manual/
en/security.general.php]

… but this rule wouldn't be complete without little bobby tables...

© September 27, 2011 Christian Boltz
26

Always trust your users
or: never check user input

[http://xkcd.com/327/]

© September 27, 2011 Christian Boltz
27

Always check for errors

Especially if you write a library.

It isn't trivial to write correct code:
 exit(-1);
 syslog(LOG_ERROR, “Can't exit.\n”);

[Lutz Donnerhacke in dclp,
translated]

This rule is especially valid if you write a library.

For example, there could be a failure in allocating memory. What do you do?

There might be cases where you don't know how an error should be handled. In that
case, it's indeed better to forward the error to the calling application instead of
handling it yourself in a way that breaks the application. Please forward all details
of the error – telling the application “something didn't work” isn't really helpful.

Back to the memory allocation failure:

The library can't simply exit with an error message – that would also exit the
calling program in an undefined state.

the only solution I'd accept in a library is that it does a quick online order for _free_
memory modules.

Or, more seriously, tell the calling application “memory allocation failure” and
hope that it will handle this error in a sane way.

So the conclusion is...

© September 27, 2011 Christian Boltz
28

Never think about error handling

Just expect your code to work.

• error handling is only boring programming work,
 it's much more exciting to fix bugs after deploying
 the software on production-critical systems
• better invest your time in developing new features
• thinking about errors is the job of
 bugreporters anyway

© September 27, 2011 Christian Boltz
29

Bugzilla speed with Coolo

> Status?
NEW
[Ihno Krumreich and Stephan Kulow, bnc#159223]

> which camera is this?
Marcus, this is my bug :)
[Marcus Meissner and Stephan Kulow, bnc#217731]

Before we come to the top 10, here's some bugzilla speed comparison with Coolo.

© September 27, 2011 Christian Boltz
30

Never expect someone will use your
software
Hardcoding your username is fine.

> mkdir: Can't create directory »»/home/ratti««
> Looks like you should use ~ instead of
> /home/ratti ;-)
Wait and see – 0.0.3 will even work if your name is
not “ratti” ;-)

[Fontlinge development fun
with Ratti, translated]

© September 27, 2011 Christian Boltz
31

Never expect someone will use your
software
Never remove any debugging code
(at least until someone forces you to do it)

mcelog should NOT email trenn@suse.de by default

[bnc#713562]

You probably have seen the online update to fix this bugreport some weeks ago

...

and finally the most prominent example of a person who never expected that his
software would be used by anyone...

© September 27, 2011 Christian Boltz
32

Never expect someone will use your
software
Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby,
won't be big and professional like gnu) for 386(486)
AT clones. This has been brewing since april, and is
starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS
resembles it somewhat (same
physical layout of the file-
system (due to practical
reasons) among other things).

[Linus Torwalds, August 1991]

© September 27, 2011 Christian Boltz
33

Nest your code as deep as possible

if ($name == “foo”) {

 if ($value == “bar”) {

 if ($number > 0) {

 if ($flags == "baz") {

 # 1000 lines of code

 } else {

 die ("invalid flag");

 }

 } else {

 die ("invalid number");

 }

 } else {

 die ("invalid value");

 }

} else {

 die ("invalid name");

}

 Never do something like this:

 if ($name != “foo”) {

 die("invalid name");

 }

 if ($value != "bar") {

 die ("invalid value");

 }

 if ($number <= 0) {

 die("invalid number");

 }

 if ($flags != "baz") {

 die ("invalid flag");

 }

 # 1000

 # lines

 # of

 # code

© September 27, 2011 Christian Boltz
34

Offer some brain training for your users

zypper ar --help |grep refresh
-f, --refresh Enable autorefresh of the repository.
zypper mr --help |grep refresh
-r, --refresh Enable auto-refresh of the repository.

[bnc#661410]

it would be too boring if the same short option would work for both, right?

© September 27, 2011 Christian Boltz
35

Ignore compiler and rpmlint warnings

• real problems cause errors, not warnings
• conclusion: warnings are not a problem

examples:

- uninitialized variables can't be real. The memory is always full, therefore the
variable must have some content

- and it will never happen that you mistyped the variable name.

© September 27, 2011 Christian Boltz
36

Never submit your patches upstream

Keeping the patches in your package is fun:
• you look like a professional if you can handle
 50 patches in a package
• you save upstream some work on reviewing and
 integrating the patches
• you always have some fun when updating the
 package and your patches to the next
 version

This slide is dedicated to the AppArmor package, but probably applies to lots of
packages.

I'd say the AppArmor package looks quote professional with 24 patches

And I can confirm that upstreaming the patches causes some review work for
upstream – I submitted most of the AppArmor patches upstream, and it took them
some days until they turned up from my patch flood again.

The result is that as soon as someone updates the AppArmor package to 2.7 beta,
less than 10 patches will be left. That someone might even be me, but unfortunately
one of the patches is 370 kB big and doesn't have a real chance to be accepted
upstream.

Final reason not to upstream patches: The openSUSE package should always be
better than the packages in other distributions, and having some important patches
others don't have indeed makes the package better.

© September 27, 2011 Christian Boltz
37

Never write any documentation

• if some old documentation exists, never update it
• nobody reads documentation anyways
• comments in the code also count as
 documentation – avoid adding them whenever
 possible

© September 27, 2011 Christian Boltz
38

Never write any documentation

• nobody reads documentation anyways

 Really?

I've been doing this 10.1 test work just
like a real user: In other words I never
read any release notes or documenta-
tion :-)
[tomhorsley(at)adelphia.net
in opensuse-factory]

Well, most users don't read the documentation.

But it might happen that the BBfH strikes out again

© September 27, 2011 Christian Boltz
39

Never write any documentation

• nobody reads documentation anyways

 Really?
 Beware of the paperclips!

•

•

•

•

•
 [bnc#65000]

Some people might remember the printed manuals from the good old time. Here's
one of them.

Each paperclip marks a bug in the “shell” chapter of the manual.

This results in a bugreport that is about 3 printed pages long.

First bugzilla comment:

@bugreporter: please do not ever touch a paperclip again ... :)

© September 27, 2011 Christian Boltz
40

> > RESOLVED INVALID
> Henne, did you actually test this before closing
> the bug as invalid?
of course i did not test it. do you think i'm bored?

[bnc#420972]

Never trust a bugreporter

Bug reporters are evil, you remember?

They steal your time by reporting defects and expect them to be fixed. By YOU, of
course.

And even worse, if you try to get rid of them by closing a bug as invalid, they
reopen it...

In this case it was a regression in the courier-imap initscript.

Needless to say that the bugreport was valid...

© September 27, 2011 Christian Boltz
41

general rule: if Olaf reports a bug, it is a valid bug.
(Olaf Hering while reopening bnc#168595)

Never trust a bugreporter

© September 27, 2011 Christian Boltz
42

NEEDINFO fun

I am supposed to be the info provider,
so here is my answer:
42
By the way:
What is the question?

[Johannes Meixner, bnc#190173]

© September 27, 2011 Christian Boltz
43

Never test small changes

switch2nvidia:
 * fixed disabling Composite extension;
 script replaced "Option" with "Optioff" :-(
[commit message by Stefan Dirsch]

KMS_IN_INITRD="noyes"
[sed result, bnc#619218]

-ao=pulse,alsa
+,alsa
[setup-pulseaudio fun, bnc#681113]

valid for changes and scripts up to 200 lines ;-)

You'll probably find lots of similar examples, but those are the most interesting
ones I could find.

First the “optioff” - but it worked and successfully disabled the composite
extension

In the second example, sed couldn't decide and finally put in “noyes” so that
everyone is happy.

And finally setup-pulseaudio broke the mplayer config file. Additionally mplayer
didn't report in which file the error was, which meant some fun until I had found
out what happened.

© September 27, 2011 Christian Boltz
44

Quoting in shell scripts is overestimated

@@ -352,1 +352,1 @@
- rm -rf /usr /lib/nvidia-current/xorg/xorg
+ rm -rf /usr/lib/nvidia-current/xorg/xorg

Probably the most-commented commit on github.
https://github.com/MrMEEE/bumblebee/commit/a047be

Hey, this makes you famous! ;-)

…

before we come to rule number one, I have to add something to my wine talk from
last year.

You probably remember that Marcus said that most wine developers prefer beer.

Well, that must be a bug, and therefore I entered a bugreport at the wine bugtracker.

and the winner is...

Ladies and and gentlemen, here is number one of the golden rules of bad
programming.

*** drum roll ***

© September 27, 2011 Christian Boltz
47

Make your code easy to understand

 #!/usr/bin/perl
 eval eval '"'.

 '#'.'!'.'/'.('['^'.') .+(
 '['^'(').('['^')').'/'.('`'|'"').('`'|')')
 .('`'|'.').'/'.('['^'+').('`'|'%').('['^')').
 ('`'|',').('!'^'+').('!'^'+').('['^'+').('[' ^+ (((
 ')')))).('`'|')').('`'|'.').('['^'/').('{'^'[') .''. ((
 '\\')).'"'.('`'^')')."'".('`'|'-').('{'^'['). ((((('`'
))))|'!').('{'^'[').('`'|"'").('`'|'%').(('`')| "\%").(
 '`'|'+') .('`'|'/').'!'.('{'^'[').':'.'-'.')'.'\\'. (((
 '\\'))).('`'|'.').'\\'.'"'.';'.('!'^'+').("\!"^
 '+'). "\"";$:= '.'^'~';$~='@'|('(');$^=
 ')'^ '[' ;($/) ="\`"| '.';$,=
 '('^ '}' ;$\= "\`"| "\!";
 ($:) ="\)"^ '}' ;$~= '*'|
 '`'; ($^) =(
 '+')^'_' ;($/)=
 '&'|'@';#;#

I think this code speaks for itsself.

I'll pay a glass of wine for the first person who tells me what this little program
does. Yes, it is valid perl code.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

prints “I'm a geeko! :-)”

special rule for openSUSE:

There is one special rule for openSUSE, and it might be more important than the
other rules I told you:

special rule for openSUSE:

Always code as if the guy who
ends up maintaining your code

will be a violent psychopath
who knows where you live.

[John F. Woods]

There is one special rule for openSUSE, and it might be more important than the
other rules I told you:

© September 27, 2011 Christian Boltz
50

• everybody who accidently ;-) contributed to
 my talk
• for the inspiration by
 http://www.karzauninkat.com/Goldhtml/

 “golden rules of bad HTML” (german)
 http://www.sapdesignguild.org/community/design/golden_rules.asp
 “golden rules for bad user interfaces”
 http://blog.koehntopp.de/archives/2127-The-Importance-Of-FAIL.html
 http://blog.koehntopp.de/archives/2611-Was-bedeutet-eigentlich-

 Never-check-for-an-error-condition-you-dont-know-how-to-handle.html
 two great articles about FAIL by Kris Köhntopp
• perl Acme::EyeDrops for rendering rule #1
• for listening

Thanks!

Questions?
Opinions?

Flames?

	title
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	title
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51

